Does restoration fire enhance regeneration of deciduous trees in boreal forests?

02 August 2016, Miriam Matheis Workshop on active management of forest protected areas

Outline

- Project framework
- (Boreal-) Forests &
 Fire
- Systematic Review
- Data Synthesis
- Results
- Conclusions

Council for Evidence based Environmental Management

• Systematic review:

Active Management of Protected Areas

Master- by research 2013-2015

• Systematic review:

Does restoration fire enhance the regeneration of deciduous trees in boreal forests

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Deciduous trees & Boreal forests Small share of deciduous trees

- ~80% spruce and pine;~15% birch, aspen & alder (Forest Statistics, 2013)
- Aspen (Populus) and birches (Betula)
- Pioneer species Light dependent and not very competitive

Key species for biodiversity

Aspen is considered the species with the most specific- associated epiphytes in the forests in Fennoscandia

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

→ dense forests: not suitable for aspen and birches

"Sprucification" of the forests

- Silvicultural measures (e.g. planting of spruce, removal of aspen)
- High browser density
- Active fire suppression

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Effects of forest fires

- Removal of the ground vegetation and the understory of the forests
- Trigger the sprouting ability of aspen
- Create unique habitat for many, particular threatened species

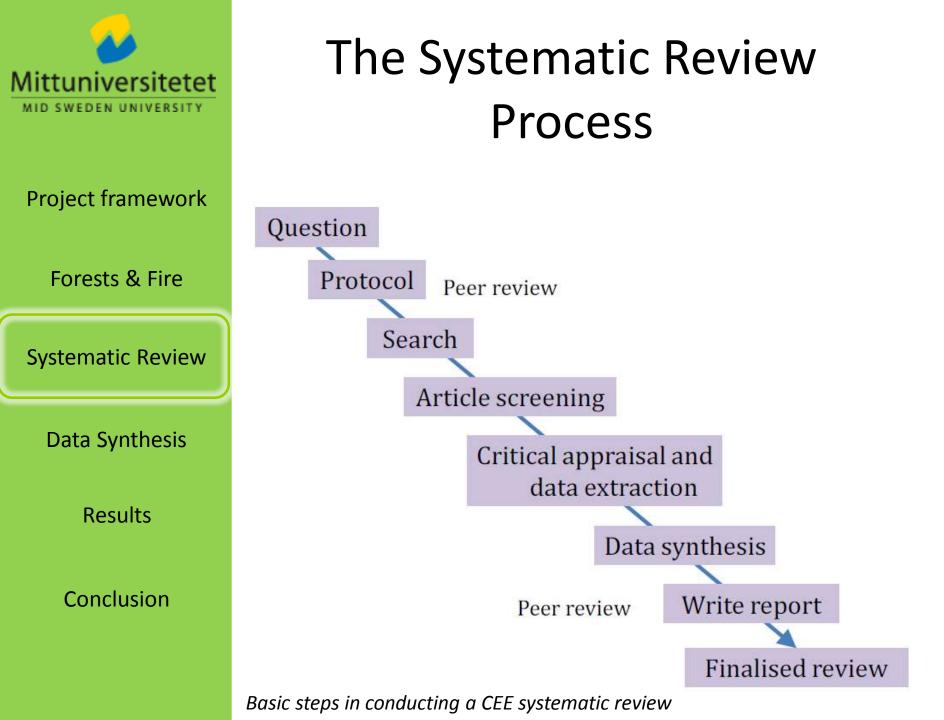
Systematic Review

Project framework

Forests & Fire

Systematic Review

"overview of **primary research** on a particular research question that tries to **identify**, **select**, **synthesize** and **appraise** all **high quality** research **evidence** relevant to that question in order to answer it"


Centre for evidence based Medicine, Oxford University

Data Synthesis

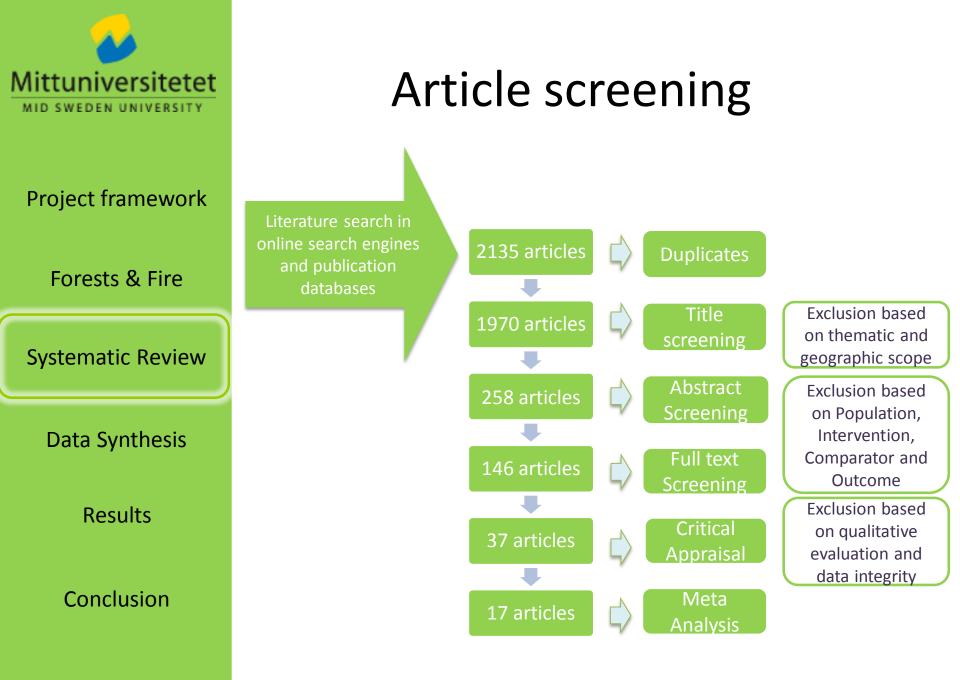
Results

Special features:

- **Pre-defined** procedure
- maximising transparency and
- minimising bias

Forests & Fire

Systematic Review


Data Synthesis

Results

Conclusion

Research Questions

- 1. Is there scientific evidence that fire affect boreal deciduous tree regeneration positively?
- 2. Which tree species benefit from fire?
- 3. Does fire affect vegetative and generative regeneration equally?
- 4. Does effects of fire change with treatment?
- 5. Is there an enduring effect of fire on deciduous tree regeneration?

Critical Appraisal

Project framework

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

To ensure the high quality of the studies

- Minimize bias introduced by study design
- Check for integrity (most common reason for exclusion: missing SD)

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Data Synthesis

Meta- Analysis

- Quantitative research synthesis
- Based on effect sizes
- Weighting the studies according to the inverse variance

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Effect sizes

Provide a standardised, directional measure of the mean change of a dependent variable

Non-dimensional

Independent of the data sources' unit

Standardize mean difference Cohens' d and Hedges' g

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Data extraction

- Meta-data (Author, year, study location)
- Effect size data (2 means, variance, sample size)
 - Study identifier (tree species, comparator, type of regeneration)
 - Effect modifier

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Heterogeneity Analysis

• Cochrans' *Q: Compares the* observed variance to that expected from sampling error

→ High Q with a low associated p-value indicate the presence of heterogeneity; no information about the extent of the heterogeneity

*I*²: measures the extent of true heterogeneity

→ Can be interpreted as percentage of the total variability in the set of effect sizes due to true heterogeneity

Relevant Studies

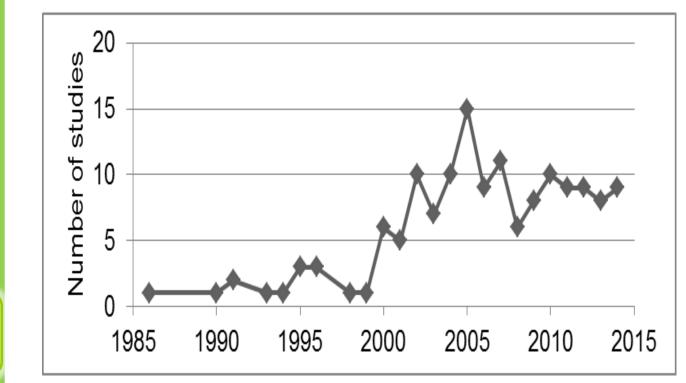


Fig. 1. Year of publication from studies that passed the abstract screening (n=146)

Project framework

Forests & Fire

Systematic Review

Data Synthesis

Results

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Relevant Studies

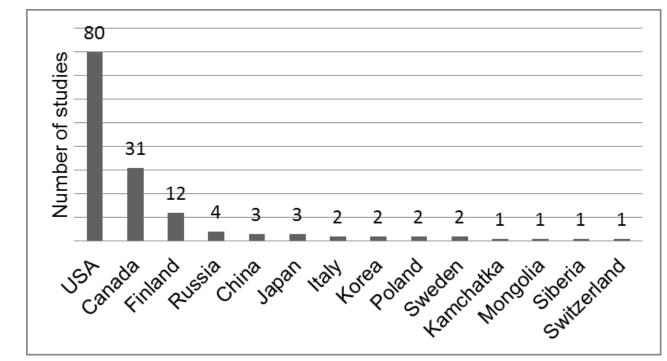


Fig. 2. Country of origin of studies that passed the abstract screening (n=146)

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Study distribution

Fig. 3. Distribution of the studies included in the meta-analysis (n=17) A small star represent one study, a larger star, two studies.

Publication bias

Project framework

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Duval and Tweedies trim and fill method:

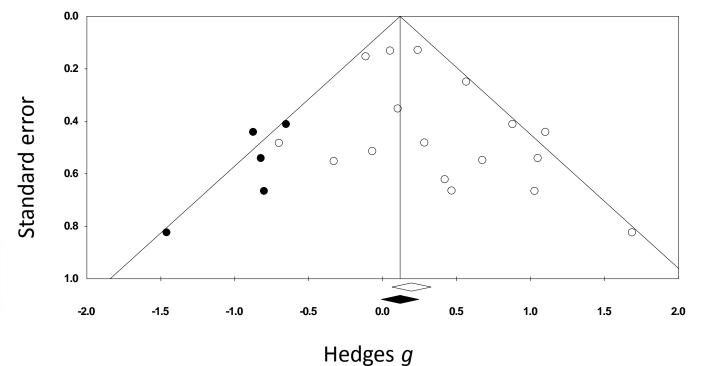


Fig. 4. Funnel plot of standard error by Hedges *g*. Empty circles represent one study; filled circles show imputed studies

Forests & Fire

Systematic Review

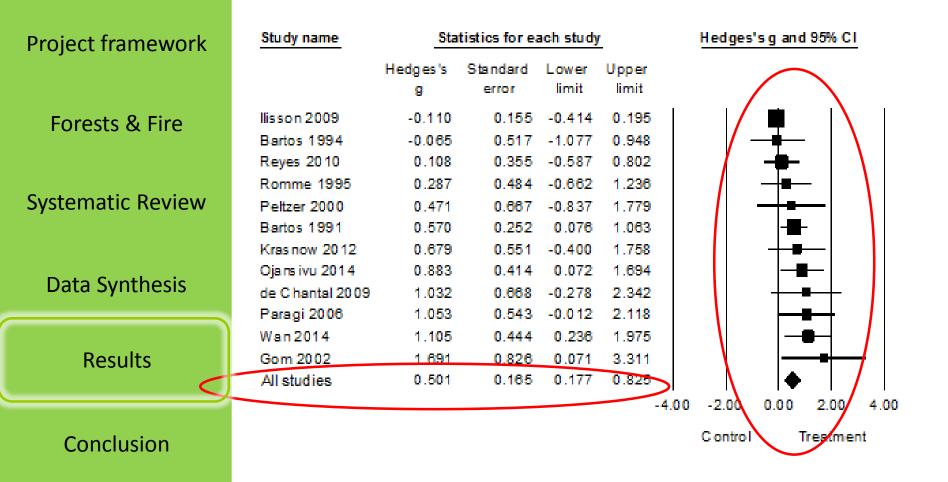
Data Synthesis

Results

Conclusion

Does restoration fire enhance the regeneration of deciduous trees in boreal forests?

Forest Plot


For all species

Project framework	Study name	Sta	tistics for ea	ich study			Hedge	s'sgand	95% CI	
FIOJECT HAILEWOIK		Hedges/s g	Standard error	Lower limit	Upper limit					
Forests & Fire	Dolan 2004 Abram s2013 Ilisson 2009 Bartos 1994	-0.696 -0.325 -0.110 -0.065	0.485 0.555 0.155 0.517	-1.647 -1.412 -0.414 -1.077	0.255 0.762 0.195 0.948		-			
Systematic Review	Nuttle 2011 Reyes 2010 McGee 1995 Romme 1995	0.056 0.108 0.242 0.287	0.134 0.355 0.131 0.484	-0.207 -0.587 -0.015 -0.662	0.318 0.802 0.500 1.236				_	
Data Synthesis	Wendel 1986 Peltzer 2000 Bartos 1991 Krasnow 2012	0.425 0.471 0.570 0.679	0.624 0.667 0.252 0.551	-0.798 -0.837 0.076 -0.400	1.648 1.779 1.063 1.758				-	
Results	Ojan sivu 2014 de Chantal 2009 Paragi 2006 Wan 2014	0.883 1.032 1.053 1.105	0.414 0.668 0.543 0.444	0.072 -0.278 -0.012 0.236	1.694 2.342 2.118 1.975					
Conclusion	Gom 2002 All studies	1.691 0.289	0.826 0.109	0.071 0.075	3.311 0.503	-4.00	-2.00 Control	0.00	2.00 Treatmen	- 4.00 t
					-					

Forest Plot

for aspen & birches only

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Moderator Analysis

- Analysing effect sizes according to potential effect modifiers
- Testing structure for homogeneity/heterogeneity

Partitioning the effect sizes according to the moderators:

- Geographic distribution
- Forest association
- Shade tolerance
- Comparator
- Regeneration type
- Time since disturbance

Moderator Analysis I

Tab. 1. Moderator Analysis for all included species

....

Project framework

Forests & Fire

Systematic Review

Data Synthesis

Results

Mo	odifier	-	±	+	Hedges g (CI)	Q (p, d.f.)	l²	Sample size	k
Coorrentia	East North America		х		0.026 (-0.173, 0.224)	11.710 (0.230, 9)	23.145	533; 304	7
Geographic location	West North America			x	0.635 (0.322, 0.948)	5.834 (0.559, 7)	0.000	134; 65	8
	Finland			Х	0.924 (0.235, 1.614)	1.551 (0.671,3)	0.000	13; 13	2
Between level				x		14.385 (0.001, 2)			17
Forest	Oak		х		0.039 (-0.286, 0.363)	9.937 (0.127,6)	39.621	431; 197	5
association	Aspen			x	0.428 (0.145, 0.711)	22.378 (0.071,14)	37.439	249; 185	12
Between level			x			3.140 (0.076, 1)			17
Shade-	Tolerant	х			-1.059 (-2.219,-1.791)	1.228 (0.268,1)	18.576	8; 5	2
tolerance	Intolerant			х	0.344 (0.124, 0.565)	25.493 (0.112,18)	29.394	553; 261	16
Between level				x		5.434 (0.020, 1)			16*

Mittuniversitete Moderator Analysis I

MID SWEDEN UNIVERSITY

Tab. 1. Moderator Analysis for all included species

Project framework

Forests & Fire

Systematic Review

Data Synthesis

Results

M	odifier	-	±	+			
	East North America		х				
Geographic location	West North America			х			
	Finland			Х			
Between level							
Forest association	Oak		Х				
	Aspen			Х			
Between level		х					
Shade- tolerance	Tolerant	Х					
Shade- tolerance	Intolerant			Х			
Between level	Between level						

Moderator Analysis II

Tab. 2. Moderator Analysis for all included species

Мос	difier	-	Ŧ	+
	Generative	- ± X X X X X X X X X X X X	Х	
Regeneration type	Vegetative			Х
	Undefined		Х	
Between level			x	
6	Uncut		Х	
Comparator/ Control	Thinning		Х	
	Clearcut		Х	
Between level			x	
	1. year			Х
Time since disturbance	2-5 years			Х
	6-19 years		Х	
Between level		x		

Project framework

Forests & Fire

Systematic Review

Data Synthesis

Results

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

Tab. 3. Moderator Analysis for aspen and birches

	Modifier	-	±	+
Coographia	East North America	Х		
Geographic location	West North America		Х	
	Finland			
Between level				X
Pagaparation	Generative			Х
Regeneration	Vegetative			X X X X X X X X X X
type	Undefined		Х	
Between level			X	
	Uncut			Х
Comparator	Thinned			X
	Clearcut		Х	
Between level				X
Time since	1. year			X
disturbance	2-5 years			X
	6-19 years		Х	X X X X X X X X X X
Between level			X	

Research Questions

	Research question	Answered	
Project framework	Is there scientific evidence that fire affect boreal deciduous tree regeneration		
Forests & Fire	positively?	•	
Systematic Review	Which tree species benefit from fire? Aspen, birches, shade intolerant species	 Image: A second s	
Data Synthesis	Does fire affect vegetative and generative regeneration equally?	X	
Results	Does effects of fire change with treatment?		
Conclusion	Is there an enduring effect of fire on	*At least for asp	en and birches
Conclusion	deciduous tree regeneration?	X	

Forests & Fire

Systematic Review

Data Synthesis

Results

Conclusion

- Fire has positive effect on the regeneration of boreal, deciduous tree species
- Regeneration success depends on multiple factors
- Further research is needed to identify influencing factors
- There is an urgent need for studies from Fennoscandia

Thank you for your attention!

Mittuniversitete Moderator Analysis I

MID SWEDEN UNIVERSITY

Tab. 1. Moderator Analysis for all included species

Project framework

	M	odifier	-	±	+	Hedges g (CI)	Q (p, d.f.)	1 ²	Sample size	k
Forests & Fire	Construction	East North America		x		0.026 (-0.173, 0.224)	11.710 (0.230, 9)	23.145	533; 304	7
	Geographic location	West North America			x	0.635 (0.322, 0.948)	5.834 (0.559, 7)	0.000	134; 65	8
Systematic Review	N	Finland			X	0.924 (0.235, 1.614)	1.551 (0.671,3)	0.000	13; 13	2
	Between level				x		14.385 (0.001, 2)			17
Data Cuethasia	Forest	Oak		x		0.039 (-0.286, 0.363)	9.937 (0.127,6)	39.621	431; 197	5
Data Synthesis	association	Aspen			х	0.428 (0.145, 0.711)	22.378 (0.071,14)	37.439	249; 185	12
	Between level			x			3.140 (0.076, 1)			17
Results	Shade-	Tolerant	x			-1.059 (-2.219,-1.791)	1.228 (0.268,1)	18.576	8; 5	2
	tolerance	Intolerant			x	0.344 (0.124, 0.565)	25.493 (0.112,18)	29.394	553; 261	16
Conclusion	Between level				x		5.434 (0.020, 1)			16*

Mittuniversitetet Moderator Analysis II

Tab. 2. Moderator Analysis for all included species

Project framework

		Modifier		-	±	+	Hedges g (CI)	Q (p, d.f.)	l ²	Sample size	k
			Generative		Х		0.233 (-0.095, 0.560)	11.507 (0.118,7)	39.167	434; 200	5
	type	neration	Vegetative			Х	0.562 (0.229, 0.896)	4.558 (0.602,6)	0.000	112; 59	7
	type		undefined		х		0.107 (-0.263, 0.477)	11.914 (0.103,7)	41.243	138, 127	6
Systematic Review	Betw level	een			х			3.622 (0.163, 2)			17
	Com	oarator/	Uncut		х		0.271 (-0.035, 0.577)	21.190 (0.048, 12)	43.369	510; 229	11
Data Synthesis	Contr		Thinning		х		0.414 (-0.237, 1.065)	10.796 (0.095, 6)	44.423	27; 29	4
Data Synthesis			Clearcut		х		0.113 (-0.189, 0.415)	5.798 (0.215, 4)	31.010	153; 134	4
	Betw level	een			х			0.923 0.630, 2			17
Results			1. year			х	0.703 (0.082, 1.324)	7.01 (0.220, 5)	28.650	57; 22	5
		since rbance	2-5 years			х	0.398 (0.022, 0.774)	18.607 (0.098, 12)	35.508	154; 71	11
			6-19 years		х		0.164 (-0.032, 0.360)	11.423 (0.179, 8)	29.969	570; 323	6
	_	tween evel			х			3.037 (0.219,2)			17

Mittuniversitetetab. 3. Moderator Analysis for aspen and birches

MID SWEDEN UNIVERSITY

	Modifier		-	±	+	Hedges <i>g</i> (95% CI)	Q (p, d.f.)	l²	Sample size	k
Project framework		East North America	х			-0.075 (-0.354, -0.204)	0.500 (0.779, 2)	0.000	102; 107	2
	Geographic location	West North America			х	0.635 (0.322, 0.948)	5.834 (0.559, 7)	0.000	134; 65	8
		Finland			х	0.924 (0.235, 1.614)	1.551 (0.671, 3)	0.000	13;13	2
Forests & Fire	Between level				х		14.493 (0.001, 2)			12
		Generative			х	0.883 (0.072,1.694)*	1.515 (0.469, 2)	0.000	9; 9	1
Systematic Review	Regeneratio n type	Vegetative			х	0.613 (0.040, 1.186)	10.198(0.070, 5)	50.969	107; 55	6
		Undefined		Х		0.221 (-0.174, 0.616)	9.395 (0.094, 5)	46.782	132; 121	5
Data Synthesis	Between level			х			2.848 (0.241, 2)			12
		Uncut			х	0.720 (0.220, 1.221)	6.175 (0.290,5)	19.022	79; 32	6
	Comparator	Thinned			х	0.854 (0.301, 1.406)	1.870 (0.760,4)	0.000	21; 23	3
Results		Clearcut		Х		0.113 (-0.189, 0.415)	5.798 (0.215, 4)	31.010	153;134	4
	Between level				x		7.592 (0.022, 2)			12
Conclusion		1. year			х	0.991 (0.116, 1.866)	5.486 (0.140, 3)	45.31	51; 16	4
	Time since disturbance	2-5 years			х	0.691 (0.287, 1.096)	3.508 (0.480, 6)	0.000	86,41	7
		6-19 years		Х		0.225 (-0.121, 0.571)	10.431 (0.108, 6)	42.480	159;140	4
	Between level			x			4.525 (0.104, 2)			12

